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Abstract. The Lennard-Jones interatomic potential for spherically symmetric particles is 
given by V(r) = M/r" - N/r", where r is the separation of the centres of the particles, and M 
and N are positive constants. The classical second virial coefficient for such a gas will be 
evaluated in closed form for the case m = 2n, in terms of the parabolic cylinder functions. 
To leading order, dipole-dipole interactions give n = 6, so these results are applicable to the 
case m = 12, which is fortuitously close to the best empirical value. 

The Lennard-Jones interatomic potential for spherically symmetric particles is given by 

U(r)  = M/r" - N/r", (1) 
where r is the separation of the centres of the particles, and M and N are positive 
constants. 

The classical second virial coefficient for spherically symmetric particles is 
00 

B2 = 277 Jo [I - e x p ( - ~ ~ ) ] r '  dr, 

where p = (kT)-' (see, for example, Mayer and Mayer (1940)), and can be evaluated as 
an infinite series for the general Lennard-Jones potential (Jones 1924). However, for 
the case m = 2n we can make the substitutions 

x = PNr-", w =(PN2/2M)'/2, B ;  = ( ~ T ) - ' ( ~ M / N ) - ~ / " B ~  (3) 

and obtain the expression 
@ 6 / n  m 

B; =-Io n [l-exp(x-$)]x-'-'/" dx. (4) 

It can be seen this expression depends only on the parameter w.  Integrating by parts, 
this becomes 

( 5 )  
The first term vanishes at x = 00, and also at x = 0 (corresponding to r = a) provided 
n > 3; this is in fact a necessary condition for existence of the virial. Thus we can write 

B i  = ~ O J ~ / " ( W - ~ ~ ( W ,  2-3/n)-I(w, 1-3/n)), ( 6 )  
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where 

(7) 

The Lennard-Jones method effectively consisted of expanding the ex term; however we 
note this is a standard integral for the parabolic cylinder functions D-T: 

(8) 

(Gradshteyn and Ryzhik 1965) with normalisation given in the same reference. They 
are tabulated in, for example, Abramowitz and Stegun (1965) (but none of the further 
references in this book tabulate the relevant type of function). Thus, using elementary 
properties of the function, 

~ ( w ,  7) = r(+‘ exp(wZ/4)~- , ( -wj  

B h = $r( I - 3 / n  )w 3 / n  exp(w ’/4)[( 1 - 3/n ) ~ - 2 + 3 / n  (-U - ~D-i+3/n (-0 11. (9) 
Explicitly, for the case n = 6, m = 12, to which the remainder of this work pertains, the 
second virial coefficient Bz is given by 

(1 0) 

The behaviour of this expression has been extensively studied as a function of 
temperature in reduced variables (Barker et a1 1966, Bird et a1 19541, although not in 
closed form. At low temperatures, we use the standard large-argument expansions of 
the parabolic cylinder functions (Abramowitz and Stegun 1965) to show that 

BZ = ( v3/’ /3)(2M/ N )  ‘l2w exp(oZ/4)(~-3/2(-w) - 2 ~ ~ - 1 / 2 ( - w ) ) .  

/ 3)( 2M/  N )  1/2u exp(w ’ / 2 ) .  (1 1) 1/2v3/2  B2 i= -(2 

The dominant term acts as exp(lUminl/kT), which is as expected from the method of 
steepest descents. At high temperatures, the small-argument expansions yield 

(12) 

where the leading term has been written out in full in order to exhibit clearly its 
independence of N. This is because the collisions are sufficiently energetic so as not to 
‘see’ the weak attractive term. However collisions at very high energies can no longer 
be represented by a simple power law of repulsion, so this expression is not to be taken 
too seriously. In practice the virial coefficient levels off to a constant value; this 
corresponds to an impenetrable atomic core. Evidently no atom is truly impenetrable, 
but all would long since have ionised at energies sufficient to perturb this core. Finally, 
the Boyle temperature T B  is that temperature at which BZ = 0, and is calculable from 

B~ = ( 2 . r r / 3 ) r ( a ) ( ~ / k ~ ) 1 / 4 [ i  - (r(i)2/4.rr)w. . .I, 

W B  = 0.764 950 8674 . . . . 
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